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NOMENCLATURE

Symbol Description

a Shear stress parameter

(a)i Coefficients of (n)i in expansion of f

(b)i Coefficients of (n) in expansion of g

Cf Friction factor, Pu

Cp Specific heat

S(d)i Coefficients of (r) in expansion of wIf ,)Nondimensional stream function

F As in Equation (51)

g(n ) Nondimensional enthalpy

SI Heat transfer coefficient

S H Enthalpy

(I)n As in Equation (56)

k Thermal conductivity

L Reference length

2. Constant in Equation (61)

N Blowing parameter

p Pressure

Pr Prandtl number, Cp/k

R Universal gas constant
Re Reynolds number, Up L/p

St Stanton number, PO 0

T Temperature

j U Velocity

u,v Components of local velocity in s and y directions,
respectively
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Symbol Description

w Injection rate

(x,y) Orthogonal coordinates

az Wall enthalpy., Hw/He
A Ratio of minor axis to major axis

ii As given in Equation (66)

Pressure gradient parameter

Viscosity

Sw(•,r) As in Equations (52) and (53)

p Densi'.y

H 1 Stream function

T Shear stress

S(9,n) •:rans formed coordinates

Ii~t
11 Subscripts

c Coolant conditions

e Condition at the edge of the boundary layer

0 o Reference conditions

w Wall conditions

x Based on local value of x

Differentiation with respect to •

in Initial values

T Superscrts

( ), Differentiation with respect to n
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ABSTRACT

The study describes an analytical solution of the nonsimilar
laminar boundary layer with pressure gradient, variable wall tempera-
ture and continuous injection.

ii The method consists of transforming the partial differential
equations for momentum and enthalpy and then solving the transformed
equations by assuming polynomial stream function and enthalpy pro-
files. Solutions obtained show very good agreement with exact
numerical results.

IiThe solutions are obtained for flows over wedges as well as
at the two-dimensional stagnation point and over curved surfaces
of a two-dimensional body in crossflow. The results of the study
show that the boundary layer is very strongly effected by the
injection mass flow rate.

v ii
ii

• vii.



INTRODUCTION

The concepts of transpiration cooling with the accompanying
high efficiency i•s-shielding a surface from severe thermal environ-
ment are well known and have been discussed at length in the litera-
ture. Critical temperatures and thezmal environments are encountered
in combustion chambers, over gas turbine blades and near the nose
of a re-entry vehicle. Transpiration cooling perhaps finds its most
important applications in keeping these components at an acceptable
temperature.

SThe advantages of increased gas temperature on the performance
of a gas turbine are well known. 'The increase in turbine entry
temperature causes an almost monotonic rise in efficiency and

specific power. On the other hand, this high temperature coupledEl with excessive centrifugal and gas bending stresses produce a
critical situation in the gas turbines, especially over the first
stage rotor blades. To insure efficient performance over a reason-
ably high lifetime makes the problem of blade cooling absolutely

am necessary.

In a previous report( 1 ) the authors have described ani analytical solution of the compressible laminar boundary layer
over a flat plate with continuous or local mass injection. There,
the authors showed that even a small injection rate (2% or less

of the main flow) is very effective in lowering the plate wall
temperature. Though high pressure gradients are present near the
stagnation point and over the rest of the turbine blade, simila
results are observed for this case also. For example, Gollnick(2)
showed-that transpiration cooling is sufficient for practical use

in cooling the axisymetric stagnation region of a re-entry vehicle.
Goodwin and Howe(3) showed that for relatively low mass flow rate
(0.1% to 1.0% of the main stream) the aerodynamic heating is
shielded to a great extent. These solutions, however, are based
on the principle of "similarity" and have to be viewed critically.
In the presence of injection, the boundary layer is not likely
to be similar. Various authors( 4 ),( 5 ),(6, have solved these non-
similar boundary layers using analytical or numerical techniques.
These analytical solutions predict nonsimilar boundary layer
behavior well for uniform injection along a flat plate with con-
stant fluid properties. However, these appicaches breakdown in
the presence of pressure gradients.

This study is an extension of the previous work and in-
corporates the presence of pressure gradients in the laminar flow
field. The report describes an analytical solution of the non-
similar laminar boundary layer with continuous injection and
variable wall temperature over a two-dimensional body in cross-
flow. The method, which consists of transforming the partial
differential equations of momentum and enthalpy and then solving
them by assuming polynomial velocity and enthalpy profiles, is
similar to the oiie described in the previous report(1)o



The aerodynamic performance of the heavily loaded turbine
blade necessitates that the mass flow rate of the coolant effusingI from the blade surface be kept as low as possible. First, the low,
transverse velocity of the, injected coolant will cause a decrease
in the kinetic energy of the mainstream through direct momentum
exchange. Second, as shown in the first report, the injection in
the laminar boundary layer makes the layer unstable, and enhances
thetransition to turbulence. Consequently, the injection flow rate
is to be kept as low as possible. In this study, the injectionIJ rate is assumed 1% or less of the main flow rate near the stagna-
tion point and less than 5% over the rest of the body surface.

Uh ANALYSIS

The equations of motion for a two-dimensional body in cross-flow are:

11Continuity;

_ (P) + (pý) =0 (1)IU ax ay

Momentum;

pu Da + v = - +a( ) (2)
ax aý ax ay Dy

: [Energy;

wU PU + pv H +] (3)
ax a aaya

Here i'. is assumed that the flow is subsonic. The total
enthalpy H is given by

p 2

2



If Prandtl number (Pr).is assumed to be unity, the energy
equation reduces to

--3 3M- (5
Pu-+ pv

These equations are then nondimensionalized by introducing the
UR expressions

Sy X /-e : U/•o v : *R ./:o,
x0 0 0 0

P = P/Po, T •pTo, p- 1 0 Uo2  P -I'o

=Cp / , HPHO H (6)

P, •
U Here

ReO =p Uo L/po (7)

IiThe equations of motion then reduce to

II a (Pu) +a(Pv)=0 (8)

Pu 2-U + pv ,•--f D= +x a (9)

pu a- + Pv 3H y ( 1 3H) (10)7x yxa Dy y

At the edge of the boundary layer, the pressure gradient is

written as

au

U=PeU1)ax e e (ii

93



I -and the various thermodynamic and transport variables reduce to

T H 22

T H-I

e 3-- Ue

R_ T Pe T (12)

le Te e

Here a linear viscosity-temperature relationship is assumed.

It is convenient at this point to introduce the Lees-Dorodnitsyn
transformation of coordinates.

x
Se p euee dx (13)

and

Pell Y
t e f 2 dy (14)

/=2-7• o P e

The stream function i is defined as

and -ay pu (15)

and is assumed to have the form

V9 = / f(9,n) (16)

From Equations (14), (15) and (16)

u = f , (9,n) (17)
u e

where ( )' denotes differentiation with respect to n

4
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IAn enthalpy functioh is~defined as

iiH (18)
He

1.1Tne trans formed fundamental equations obtained from the
above relations are now written as

foci + ff'' 2g[f' f'1' + x .(g.- f, 2  (1*9)i

and

;- Jj where

dun 2~e (21)U e d

BOUNDARY'CONDITIOW'S

I]The boundary conditions in the 1physical plane are-

J]y =0 =P~ w =constant

2k -T (P V) C (T~ T) (22)111 ~ay p

e (23)

Third condition of Equation (22) means that al1 the ht-at
transferred from t-he hot gas goes to increase the coolant temnp-Ierature to the exit wall temperature. In terms of the trans-
formed v;ariables, these boundary conditions reduce to,

5



fw ue0

n. = 0 Pelie / 2  o e

2 w Re ( (gw gc) 24)an U e

g 1 (25)

SThe second condition of Equation (24) is derived from the
definition of the stream functions, Equations (15) and (16).
For floiý over wedges where the pressure gradient (X) is constant,

9 Uelcan be written as an explicit function of •. In that case,
the value of fw can be obtained as an explicit function of 9.
However, for flow over curved surfaces, pressure gradient variesl with the downstream distance and hence it is much easier to obtain
the value of fw at each point (9) by numerically carrying out theintegration up to that location.

SOLUTION OF THE NONSIMILAR EQUATIONS

The solution of the nonsimilar Equations (19) and (20) is
obtained in a manner analogous to that described in the previous
report( 1 ). The modified stream, and the enthalpy function are
expanded in terms of polynomials of n:

9 ann
f . (26)

n- n

7 b n
g + n+nE (27)Fl n1

where a and b are functions of g only.
()n n

From previous work( 1 )'( 7 ) it was realized that to obtain a
reasonably good accuracy neai the two-dimensional stagnation pointIi (1 = - 1.0), it is necessary to include at least 10 terms in the

6
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I stream function. It was also observed(7) that the momentum equation
is much more sensitive and unstable than the energy equation. Con-
sequently, terms up to n8 are included in the momentum equation
while energy equations retain terms only up to

If all the terms present in the coefficients of powers of n
M are retained, the solution becomes very lengthy and cumbersome.

Hence, an order of magnitude analysis is necessary to retain only
the most significant terms.1 From the boundary conditions at n = 0 and from direct dif-
ferentiation of the Equations (26) and (27) it follows

aI =0 (28)

N= f (29)w

SbI =a (30)
a•ln=0

Again, following the procedure described for the flat plate
solution, the unknown coefficients a3, a4; b 2 , b 3 etc. are obtained
in terms of a2, N and gw by substituting Equations (26) and (27)
into Equations (19) and (20) and matching the coefficient of powers
of n.

Since the injection mass flow rate is kept 1% or less (of
the main flow), the absolute value of N, especially near the
stagnation point turns out to be always less than 0.7. In that
case, the contribution of all terms involving N in a7, a8, a 9
and b 6 and b 7 is quite small as compared to the contribution of
the terms present in a 2 to a 6 and bI to b5 . Hence all terms
involving N are neglected in the expression of a7, a 8, a9 , b 6
and b7 . Again, only first and second order terms in N are re-

Stained in a6 and b5 . Also, since the values of 4 da/dý, ý dgw/dý,
ý dN/dý, b 2 etc. are the same order of magnitude (or less) as N,
the same assumptions are applied to these terms or a product ofI these terms. These assumptions greatly simplify the final solution.
Further comments on these assumptions are made in later chapters.

The various coefficients are obtained as

aI2 = a = unknown (31)

a 3 = - Na - 2ý a(N) + X a (32)

, 7



a =N2 a- 4aN(N) + 442a(N) -Na + bl - 2ýAa(N)
4 4 4

1 (33)

a5 = a - 6gaN2(N) - 124 2 aN(N) 2 _ a2 + 2a(a)- 8 3 a(N) 3

+ AN2 e - blNA + 44EaN(N) - 2Aa 2 - 29b1A(N) 9 + b 2

+ 4g Ac(N) (34)

a6 =-Na5 - 4a 3a + b3 - 6Aaa 3 - 2E(N) a5 + 49a(a 3 )4

(35)|3
Neglecting all terms of the order of N or higher and sub-

stituting the values of a 3 , a5 , b3 , etc.

2 2 2

Sa6 3N blX + 5Na2 + 8XNa2 6gaN(a)• + 12XblNg(N)•

- 4ala + 29aA(a) + 1242 b (N)2 - 4 2a(N) (a)

+ 16a 2C(N) - 6X2 a + 44ac(X) + 6aX(a))

- 2 a 2 4(N) - 84 2 a(a) 4 (N) 9 (36)

a 7 =- Na 6 - 7aa 4 - 4(a 3 ) + Ab4 - 6X(a 3 ) - 8Xaa 4

+ 6Wa(a 4 ) - 24a 4 (a) 4 + 29a 3 (a 3 ) 4 - 24a 6 (N) 4  (37)

This reduces to

a - 8ab 1A - 4A2X2 - 6A3X - 8A abl (38)U
I

• • •m n• m m~l n~ • ma • ,mu • w• mmm • mm•, • • r nn n• nnm . . .
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Similarly, expressions for a 8 and a 9 are

Sa8 = - 16A 12bI + 32a3X + 20a3A2 + lla3 -20X3bi1 (39)

a 9 = 90a2 Xa + 2262 a 2a - l6b 1 2 - 20bl3 + 132A3a a (40)

IJ Here

a 9= (41)

b 39b (42)

b 2 = Nb1 - 2gbI(N) (43)

b 3 = N b + 4ýNbI(N) + 2a(a)E+ 4ý2b1 (N)2 (44)

b 4 = - ab1  - N3 bl - 6N2 b 1 (N) - 4 ýNa( a)

L- 12ý 2Nb 1 (N? + 4ýa(b) - 8 2a(a) (N) (45)

- 2ýbl(a) 8E 83 b 1 (N)3 + 2ýXa(a) (46)

k b 5 = 5ab1 N - 16ýaN(b 1 )• - 4ENXa(a) -Xb

Z + l0•b 1 N(a)E + 14Eab 1 (N)• + 60Xa(bl)E

i - 16E 2aa) (N) -4 8 Ea(bI(N)• + 28E (a) bI(N)

- 2bla•(X) + (a) {6N 2a + 56E3 a(N)2 + 40 2aN(N) }

(47)

I Similarly,

6= - b1
2  (48)

9



II "and

1b7 =llba 2 +2blAa 2  (49)

[I All other terms in b. and b are small in comparison to the above
terms and are neglected.

UThe momentum equation, after first integration is written as

e' = e (•,n) (50)

Ij where

U f f dil (51)

$0

L and

w(•,n) =o [2ý{f'(f') - f''(f) } + (g- f, 2 )] eF dn + a
(52)

U Now w(g,n) is expanded in terms of powers of n as

U w(,) = dnn- (53)
nI

LI Equations (26) and (53) together with the well known expansion
of the exponent

F2
e = - F + + ----------- etc. (54)

are then substituted into Equation (50). Again, matching the
coefficients of powers of n gives the coefficients "d " in terms
of a, aand N. n

A second integration reduces Equation (50) to

- 0 0 d n
f' (•,r) = I e- ( n - dn (55)

0 o

10
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As shown elsewhere' , this equation can be written as

3
6r 8

e _ 6 n n n ) dn (56)
0 n=0

Here the right hand side is expanded up to the eighth power of n.
I are functions of CIL and hence functions of a, a and N.

By setting the upper limit to n = gives the left hand side
as

-f' (•,c) =1.0 (57)ii
(This follows trom the remaining boundary condition.) Thus, when
the integration is performed and the numerical values of the Gamma
functions substituted, the final solution of the momentum equation
is obtained as

a2/3+ 7206 + C ( C3 + C6) +L- C£ A] + a /3[N (-C+ 1-

5 2 2 2+ i Xc4) + N (N) (-2C C + ý AC1 )]+[2 C (N)

[2 10613 (a)+ 2 C2gN(N)• + 1 C2 N2]+ a-i/[l C3 9(a)• 360 E~

C3(N) 3 _2 C39 2 N(N) 2 _ C3 N 2(N) - N3
3 9 3 9 6

+a-2/3 [(C 1 2 1 + C X X2+5 A3
1 C1)2 1 -23

a-2/3[•(I~T5- + 12C)+ 14-5e +C7 +3 +19- 1

S- T C4 N•(a)•- C4�2(N) (a)+ C4 •a()• ]+ a [a(0.5 C2 NX

SC2 X (N) + L2 C5NX+ 6 CX(N)+ (1 C 1 +1- C5X2 20 5 60 5 ~ 4 +4 5N + 1( 20 2  6~0 5

S-4/3 1 2i--05 C2)-T•C5•NA (a) +6 •N C (I) +a [a%( 3 X

2 2 3 x: +b( C3 N2X2- 20 x:

1 1+1 t53
+ - C6N + - C6 (N) + 1- C6N2)] + a- [bI ( N C4N214 56 9 561 C



." . ...... 7

2 2 Y2 C5A2 C5X3
+ C4N(N) 9 + C4 X (N) )I+a- (ai- 16 30 20

+17 C8 x3 + 4 C]+a-7/ 13 [3 C4Nc 2 2  1 c- CbX 2 a

7 222_ g ki(N)c -2 1 N 2a (58)

O where C = 1.623, C1 = 1.493, C2 = 2.0, C3 = 3.234, C4 = 3.73,
C5 = 12.0, C6 = 25.92, C7 =59.6 and C8 = 144.0.

As shown by Meksyn (8) the solution of the momentum equation,
Equation (58), may or may not be convergent depending on the number
of terms involved and the value of A. Setting N = (N)& = (a)ý = (a)t = 0
and a = 1, it is possible to evaluate the values of "a for various

[I values of X. These values are presented in Table I.

LITable I

SH Values of Shear Stress Parameter as a Function of X (from Equation (58))

aLt apr apr

H Literature without Euler with Euler

Values Trans formation Trans formation

-1.0 1.232 1.31 1.234

-0.5 0.927 0.94 0.933

J-0.2 0.687 0.696 0.694

-0.1 0.587 0.592 0.588

0 0.47 0.48 0.481

Comparing the values of apr (without Euler transformation from
Table I and from previous work (1),(7) at X - 1.0, it is evident
that at that point the solution is very slowly converging.

Meksyn has shown that this is due to the limited radius of
l convergence of Equation (53). To improve the convergence, Meksyn

applies the Euler Transformation.

12
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It is necessary to realize that the expression for w(•,n),
Equation (52) itself, is convergent. It is the transformed series,
Equation (53) that is very slowly converging. As shown by Euler,
the sum of this very slowly converging series is the finite numerical
value of the convergent expression, Equation (52). A detailed ac-
count of the Euler transformation is given by Bromwich and Macrobert
Hardy(I0) and Knopp(ll). Applying Euler transformation to the present
solution, the values of the coefficients become CO = 1.621, C1 = 1.464,
C2 = 1.82, C3 = 2.41, C4 = 2.98, C5 = 3.05, C6 = 2.33, C7 = 1.163 and

OF C8 = 0.281. Substituting these values in Equation (58) and again
setting N = (N) = = (a)( = 0 and a = 1, the values of "a" as
as a function oi X are re-evaluated. These values are also shown in
Table I. These values of "a" obtained with Euler transformation
agree extremely well with the literature values.

In any case, from Table I, it can be concluded that the Euler
transformation gives significant improvements only for high values
of X, i.e., near A = -1.0. For cases where X lies betveen X = 0
and A = -.0.7, the solution of the momentum Equation (58), is con-
vergent and the improvement caused by the Eu)er transformation is
small.

As will be seen later, final solution of the momentum equation
is obtained with, as well as, without the Euler transformation.
Comparison between these two solutions is made in the chapter "Results
and Discussion".

Solution of the energy equation is obtained along similar
lines, with the final solution being

44(a)E + a-ll/3[.659b l + 0.072b1 X - 6.476N4(a)E

_ 4.3124 2 (a) (N) + 5.036g(b 1 ) 1

S+ a- 2 / 3 [- 3.97N(b 1 )4 + E(W)E(1.49N2 + 8.945N(N)

li+ 13"92 2 (N) 2 11.l92E 2(bl)(N)• -.8ý N 1"245Nbi+ •2~() -b' 2. 9864bi (N)•

*~ E 2) ±194 El4' 1 4 .4N 1

+ 0.4ý64blX(N) + a-1 [4ý 2b(N) 2 + 4ýNb (N) + biN2

+ a- 4 / 3 2.518X~a(a) C 2.5894b1 (a) ] + a- 5 / 3 [-0.248Xb a +2.4324Nb (a)E

2 1

I' - 0.9934N~aca) +l1.494Acd~b1  3.974 ( 4(N) +6.954 2b (N) 4(a~)

- 0.497•ab•(A) + a-2[-0.6blaAN - 0.1b 2A - 3NXb a(l + X)/2 I
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+N~bia ( + 0.2blxa(N) ]+ a/ 0.288b 2 NX+ 0.144EAb (N) a] 1-

7 (59)

Regardless cf the number of terms involved or the value of X,
Equation (59) will always give a = 1.0 at the stagnation point
for N = 0. Hence, Euler transformation is not applied to the
solution of the energy equation.0
Conditions at the Stagnation Point

ElTo solve the Equaticns (58) and (59) simultaneously it is
necessary to have the initial values of "a" and a i.e., ain and
ain. These initial values are also stagnation point values. There
are two sets of stagnation point values depending on the mode of
injection.

[j(i) If the injection is assumed to occur from x > 0, the stag-
nation values of a are the same as those given in Table II, i.e.,
fcr A =- 1.0,

ajt f
a. i 1.234 (with Euler transformation)JUa. = 1.31 (without Euler transformation)

and

t a in 1.0

(ii) If the injection is assumed to occur at the stagnation
point, the problem can be resolved as follows.

Very near the stagnation point, the velocity outside the
boundary layer of a two-dimensional body in crossflow can be
written as

Ue = £x (60)

where Z is a constant.

For a two-dimensional elliptic cylinder in crossflow,

=1+ A (61)

14
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I where A is the ratio of minor axis to major axis. From the
definition of s, and Equation (60),

7x- (62)
V2

Again, for very small values of ;, ýda/dE, gda/dý and
CdN/dE are neglected. Then,

f = - = N (63)
w

Equation (63) then gives the stagnation value of N. The
stagnation point values of "a" and a can now be obtained from
simultaneous solution of Equations (58) and (59) using Equations
(60) and (63). As mentioned above, ýda/dý, ýda/dý, ýdX/dC and
tdN/dý are omitted. Under these assumptions, the solution reduces
to "similar solution". However, at the stagnation point the value
of g ÷ 0 and the nonsimilar terms tend to drop out.

Since the factor fw(N) incorporates thn main flow rate, body
geometry and the injection flow rate, the stagnation point solutions
obtained with this factor as a parameter would constitute a very
"11general" solution. That is, such solutions would apply to any
two-dimensional body in crossflow. The stagnation point values are
given in Table II.

Table II

X -f a (1 - / -2

-1.0 0.0707 1.16 0.113

Ii -1.0 0.212 1.02 0.299

-1.0 0.354 0.885 0.456

-1.0 0.707 0.556 0.783

Once the value of "a" and of a has been determined, the

friction factor and the heat transfer coefficient are obtained
directly as

C /f /2 =a (64)Cf
e

15
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3 and

w C VY'(a-g )
S t XR-C (65)I!

NUMERICAL COMPUTATIONS

Equations (58) and (59) are first order differential equations
S and can be solved by any well known integration technique. Both

equations involve the unknowns "a" and a and hence have to be solved
simultaneously.

The continuous blowing at the wall gives rise to continuous
boundary conditions. These equations therefore are very easily
solved on CSMP (Continuous Systems Modeling Program). Numerical

~j answers are obtained using fourth order Runge-Kutta, fixed-step
integration technique. The step size used was ,ý = 0.0001. To
test the stability, this solution was compared with the answers

,• obtained using rectangular Simpson's and Adam'- method of integra-

i tion (all the above techniques are available con CSMP). The answers
obtained by all these techniques were within 0.5%.

The starting values of "a", i.e., ain, are those given in
Table I. For the flow near the stagnation point, -:he "in" value
of "a" could be that given in Table I or II depending on the mode
of injection. Same is true for the initial value of a. For wedge
flows, the solution is carried out up to x = 0.9 ft.. or until
the value of "a" dropped below 0.02. For the 4:1 elliptic cylinder,
the solution is obtained only over the front half while for the
experimental airfoil, the solution covers the entire surface,
suction and pressure. Any time the solution gave the value of "a"
below 0.02, the computations were stopped. At this low value of
the shear stress parameter the boundary layer is very thick and
unstable and the prandtl boundary layer assumptions are no longer
valid.

The numerical calculations were carried out for the Zollowing
values of the variables:

I

16

_41



S... .... t ,, -, '.... . . ..-Z~... W$• e.~........ "2?,f .... ' .E ... w.- ->-=. • .....

-I ~' Table III

Variable Values Flow Type

-0.1, -0.2

w 0.005, 0.01, 0.02, 0.05

0 200 ft/sec Wedge Flow
O ,2460 OR

I c 530 OR

Re 10 5 /ft

-I -1.0 to 0.0
w 0.001, 0.005

0o 800 ft/sec Flow Over a 4:1(Major Axis: Minor
T 2450 OR Axis) Elliptic

I 530 R Cylinder

Reo 105 (based on half the
major axis)

II A-1o0 to 0.023

w 0.001, 0.002

U 142.8 ft/sec Flow Over

0o 2460 OR Airfoil

Tc 530 OR
ReO0 625000 (based on chord

Slength)

I
i•:3.7
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[I RESULTS AND DISCUSSION

To suppliment the present analysis, the answers obtained from
Equations (58) and (59) are compared with the numerical computer
solution of Equations (19) and (20). This program was developed

n by Davis and Werle 12). The program is extremely versatile and
! U gives solutions for:

1. Any Mach number, i.e., subsonic or supersonic;

2. Any Prandtl number; and

3. Any pressure gradient.

The program uses a much more realistic viscosity - temperature
relationship given by Sutherland formula, than the linear relation-
ship used in the anal tical solution. It can be shown (see "Proposals
for Further Research") that if the more realistic v a T0O 7 5 relation-
ship between viscosity and temperature is used, the solution of the
momentum and energy equations would be slightly different.

Since "a" is a strong function of viscosity, the differences
between the values of "a" obtained from the analytical solution and
those obtained from the numerical solution (computer program) are
likely to be more severe than the differences between the two values
of the wall temperature. Also in the computation of Stanton number,
due to the presence of the factor (1 - a) in the denominator, the
differences between the two values of Stanton number are magnified.

Flow Over Wedges

LJ The effects of uniform blowing on the wall temperature,
local heat transfer (in the form of Stanton number) and local
shear stress parameter for flow over wedges are shown in Figures
2 thorugh 7 (Figure 8 shows the velocity distribution over these
wedges). Solutions are presented for ten-fold variation in the
injection rate from w = 0.005 to w = 0.05. As to be expected,
as the coolant injection rate increases, the wall temperatureand the shear stress at the wall both decrease. With i .creasing
distance from the leading edge, the wall temperature approaches
coolant temperature (Tc) and the sheaL stress approaches zero

|I (blown-off boundary layer). At the leading edge, the temperature
gradient is infinite (see Figures 2 and 5). This is due to the
fact that in the present analysis the thermal conductivity of the
wall has been neglected.

Comparison between the analytical values and numberical

computer values of the wall temperatures is very good. For shear
stress parameter, the numerical solution predicts a much steeper
gradient than the analytical solution (for small values of x) and
a more gentle one for large values of x. Agreement improves as the
injection rate increases.

18
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I Flow at the Stagnation Point and Over the Surface of a Two-Dimensional
Body in Crossflow

Effect of coolant injection through a porous wall of 4:1I •(ratio of major axis to minor axis) elliptic cylinder is shown
in Figures 9, 10 and 11. The velocity distribution and the pres-I • • sure gradient parameter X over this cylinder are given in Figure 12.
This figure also shows the contour of the elliptic cylinder. Thegeometric parameters of the cylinder are

S• 1 Minor axis-2

= - rMinor axis1
2  (66)

U 1e + A) sin (0) / i- s2 (81 (67)

where

Minor axis (68)
Major axis

and 8 is the angle measured in radians from the front stagnationpoint.

x = f F- e: cos2 (0) do (69)
0

These values were obtained from Evans (13)(the reference,length is (Major axis)/2).

SAgreement between the numerical and analytical values is very
good. Analytical solution is presented with and without Euler
transformation. As far as the wall temperature distribution is
concerned, (Figure 9), the Euler transformation does not make much
difference. However, for the shear stress parameter, the solution
obtained with the Euler transformation agrees much better with the

"F computer answers than that obtained without Euler transformation.

The agreement between the analytical and numerical solutions
lI clearly support the validity of the assumptions made earlier. It

was assumed that for small absolute values of N(INI < 0.7), terms
involving higher powers of N (e.g., N2 , (7 dN/dE)2 etc.) could be

neglected for the coefficients of n 5 , n6 , 117 and n8. (In fact,
4 for n7 and ri8 all terms involving N are negligible.) Ve.-y good

agreement between the numerical and analytical values shows that
the contribution by these terms is indeed small enough to be
neglected.

It is necessary to realize that this assumption is valid only
(i) for small injection flow rates (which are likely to be en-
countered in the turbine Llade cooling,; and (ii) near the front

19



Sstagnation point.

Near the stagnation point, X is of the order of -1.0 and N
:. U is at least one order of magnitude lesser. Consequently, the terms

'involving N2 , [E(N)ý] 2 etc. are very small. Away from the stagna-
tion point (i.e., with increasing x), the absolute value of X

j'j decreases while that of N increases. Downstream from the crossover
fl point (this is the value of x when 111 = INI), the contribution of

higher order N-terms becomes important. Fortunately for most any
two-dimensional body in crossflow for small injection rates, thisL crossover point will occur far enough downstream from the stagnation
point such that the contribution by the n5 or higher terras (of the
series) will be small enough to be neglected. Hence, the validity
of the assumptions will hold for all values of x.

As mentioned in the chapter on the stagnation point solution,
the initial conditions for the stagnation flow depend on the mode
of injection. If the injection starts for x > 0, the initial
values are:

SL a. = 1.234 (with Euler transformation)
in

ifi [J a. - 1.0

If, however, the injection is assumed to initiate from x = 0,Sthe initial conditions are the values given in Table II. These
values are also presented in Figures 13 and 14. Figure 13 also
shows the stagnation point temperature obtained by other investi-
gators. The present analysis predicts slightly lower values of
the stagnation point temperature throughcut the range of injection
considered (w = 0.001 to 2 = 0.01). The solution is valid for ar'y
two-dimensional body in crossflow provided the value o.f N at the

L stagnation point does not exceed (in the negative sense) -1.0.

Solutions of the wall temperature and the shear stress for
I the 4:1 elliptic cylinder with the initial values obtained from

Table II (i.e., stagnation values) are also presented in Fig-
ures 9 and 11. In all cases, the solutions quickly merge with

S! the one obtained with the initial values from Table I.

Flow Over an Airfoil

The stagnation point analysis is also applied to the flow over
an airfoil (snown in Figure 15). The experimental velocity distri-
bution over the airfoil was obtained by M. Hussein and W. Tabakoff(14)
Readings were taken at the room temperature, with Uo = 142.6 ft/sec
and Reynolds number (based on chord length) = 625,000. The values
of x and dX/dý were calculated from Figure 16 (which gives the velocity
distribution over the suction and the pressure side of the airfoil).

20



* Figures 17 through 22 show the wall tempi rature distribution, heat
transfer and the friction factor (instead of shear stress parameter)
over the suction side and pressure side of the airfoil for w = 0.001
and w = 0.002. As before, blowing is very effective in lowering the
airfoil surface temperature but at the same time it induces instability
which may result either in transition to turbulence or laminar blow-

Effect of inclusion of Higher Order Terms in n on the Flat Plate
and Wedge Flows

To find the effect of inclusion of higher order terms, i.e.,
Equations (58) and (59) on flat plate (Reference 1) and wedge flows,
these equations (Equations (58) and (59)) are again solved for
X = 0, X = -0.1 and A = -0.2. Other parameters are the same as
those given in Table III. Solutions with and without Euler trans-
formation are presented for w = 0.01 in Figures 23 through 25.
Surprisingly, the assumptions made in derivationa of Equation (58)
and Equation (59) are more critical for wedge flows.

For values of X of the order of A = 0 to X = -0.1, ze con-
tribution due to the terms n5 or higher in the series expansions

solutions (wzh as well as without Euler transformation) show

that as the number of terms in the series are increased, the
agreement between numerical and the analytical results improve.

* The two solutions agree very well.

As the absolute value of A increases, i.e., A = -0.2 say, the
contribution by the higher order terms in the series becomes
important. For the wedge flows A is constant, independent of the
downstream distance. Even for small values of x, the value of N
here is comparible to that of A . Here the crossover point occurs
much nearer the leading edge than in the case of a two-aimensional
body in crossflow. Consequently, results of Equations (58) and
(59) show larger deviation from the numerical values for A = -0.2.

For the flat plate and wedge flow solutions also the results
with Euler transformation are slightly better than -hose without
Euler transform.,ation. For the flat plate, the values of the wall
temDerature and the shear stress obtained with or without the trans-
formation are so close that within the scale of the graph, they
could hardly be differentiated.

Bounda_.y Layere Blow-Off

As r.er..on.e. before, when the shear stress parameter drops to
a vcrv low vlue& (below 0.02) the boundary layer becomes unstable.

tn he -Dres.Ž.t ana2vsis, the solution of the equations is terminated
when th;e value of "I" reaches very low values (0.02 to 0.01). The
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present theory does not give satisfactory answer as to whether the
lamiinar boundarv laver will undergo transition to turbulent boundary

T layer or will get blow-. off when shear drops to very low values. A
more thorough investigation is necessary to evaluate the effect of
injection on laminar boundary layer stability.

CONCLUS IONS

:_n analytical solution for compressible laminar boundary layer
with continuous mass injection was derived. Here the previous work( 1 )
is extended such that the solution is valid for any pressure gradient
including the stagnation point; for subsonic flows with a Prandtl

nuber of one and for a linear viscosity-temperature relationship.
The method, however, can be broadened to consider hich Mach numbers

U and real representation of Prandtl number and viscosity temperature
variation. Numerical examples for the wall temperature and shear
stress were obtained for continuous injection and the values compared
with exact comouter solutions. Very good agreement between the two
values of wall temperature was realized. The agreement in the shear

S' stress values is fair.

The following general conclusions are drawn:

(i) For transpiration cooling, the wall temperature falls
rapidly with increasing injection mass flow rate and the tempera-
ture gradient is infinite at the leading edge.

(ii) Injection of the coolant into the boundary layer makes
the layer unstable. This is most likely to cause early transition
from laminar to turbulent boundary layer.

" (iii) When the shear stress parameter "a" drops below 0.02,
the solution becomes unstable.

(iv) in cooling a turbine blade by transpiration cooling
method, an injection rate of 0.5% of the main flow is sufficient
to maintCain the blade temperature below 65% of the mainstream
temperature.

(v) Tnjection of mass into the laminar boundary layer causes
instabilities in the boundary layer and may result either in transition
to turbulent boundary layer or laminar blow-off. Further investigation
is necessary to study these phenomena.
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TABLE IV

Explanation Of Symbols Used In The Figures

Symbol w Remarks

0 0 O 0.001 Each symbol in the figure

0 0.002 represents a data point obtain-

0 , 0.005 ed from the numerical computer

{J 0.01 solution.

0.02

0.05

(Except in Inteqral solution, terms up
Figs. 9-22) to ng in the series.

-- (Except in Intecral solution, terms up
Figs. 9-22) to r1f in the series (with

Euler Transformation).

OI
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